Complex protein targeting to dinoflagellate plastids.
نویسندگان
چکیده
Protein trafficking pathways to plastids are directed by N-terminal targeting peptides. In plants this consists of a relatively simple transit peptide, while in organisms with secondary plastids (which reside within the endomembrane system) a signal peptide is appended to the transit peptide. Despite amino acid compositional differences between organisms, often due to nucleotide biases, the features of plastid targeting sequences are generally consistent within species. Dinoflagellate algae deviate from this trend. We have conducted an expressed sequence tag (EST) survey of the peridinin-plastid containing dinoflagellate Heterocapsa triquetra to identify and characterize numerous targeting presequences of plastid proteins encoded in the nucleus. Consistent with targeting systems present in other secondary plastid-containing organisms, these all possess a canonical signal peptide at their N termini, however two major classes of transit peptides occur. Both classes possess a common N-terminal portion of the transit peptide, but one class of transit peptides contains a hydrophobic domain that has been reported to act as a stop-transfer membrane anchor, temporarily arresting protein insertion into the endoplasmic reticulum. A second class of transit peptide lacks this feature. These two classes are represented approximately equally, and for any given protein the class is conserved across all dinoflagellate taxa surveyed to date. This dichotomy suggests that two mechanisms, perhaps even trafficking routes, may direct proteins to dinoflagellate plastids. A four-residue phenylalanine-based motif is also a consistent feature of H. triquetra transit peptides, which is an ancient feature predating red algae and galucophytes that was lost in green plastids.
منابع مشابه
Plastid ultrastructure defines the protein import pathway in dinoflagellates.
Eukaryotic cells contain a variety of different compartments that are distinguished by their own particular function and characteristic set of proteins. Protein targeting mechanisms to organelles have an additional layer of complexity in algae, where plastids may be surrounded by three or four membranes instead of two as in higher plants. The mechanism of protein import into dinoflagellates pla...
متن کاملEvidence for the Retention of Two Evolutionary Distinct Plastids in Dinoflagellates with Diatom Endosymbionts
Dinoflagellates harboring diatom endosymbionts (termed "dinotoms") have undergone a process often referred to as "tertiary endosymbiosis"--the uptake of algae containing secondary plastids and integration of those plastids into the new host. In contrast to other tertiary plastids, and most secondary plastids, the endosymbiont of dinotoms is distinctly less reduced, retaining a number of cellula...
متن کاملGenome-Wide Transcript Profiling Reveals the Coevolution of Plastid Gene Sequences and Transcript Processing Pathways in the Fucoxanthin Dinoflagellate Karlodinium veneficum
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthi...
متن کاملHeterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate prot...
متن کاملPhylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles.
According to the chromalveolate hypothesis (Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347-366), the four eukaryotic groups with chlorophyll c-containing plastids originate from a single photosynthetic ancestor, which acquired its pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 348 4 شماره
صفحات -
تاریخ انتشار 2005